9 resultados para Major histocompatibility complex

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flaviviruses have been shown to induce cell surface expression of major histocompatibility complex class I (MHC-I) through the activation of NF-kappa B. Using IKK1(-/-), IKK2(-/-), NEMO-/-, and IKK1-/- IKK2-/- double mutant as well as p50(-/-) RelA(-/-) cRel(-/-) triple mutant mouse embryonic fibroblasts infected with Japanese encephalitis virus (JEV), we show that this flavivirus utilizes the canonical pathway to activate NF-kappa B in an IKK2- and NEMO-, but not IKK1-, dependent manner. NF-kappa B DNA binding activity induced upon virus infection was shown to be composed of RelA: p50 dimers in these fibroblasts. Type I interferon (IFN) production was significantly decreased but not completely abolished upon virus infection in cells defective in NF-kappa B activation. In contrast, induction of classical MHC-I (class 1a) genes and their cell surface expression remained unaffected in these NF-kappa B-defective cells. However, MHC-I induction was impaired in IFNAR(-/-) cells that lack the alpha/beta IFN receptor, indicating a dominant role of type I IFNs but not NF-kappa B for the induction of MHC-I molecules by Japanese encephalitis virus. Our further analysis revealed that the residual type I IFN signaling in NF-kappa B-deficient cells is sufficient to drive MHC-I gene expression upon virus infection in mouse embryonic fibroblasts. However, NF-kappa B could indirectly regulate MHC-I expression, since JEV-induced type I IFN expression was found to be critically dependent on it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pathogenic mycobacteria employ several immune evasion strategies such as inhibition of class II transactivator (CIITA) and MHC-II expression, to survive and persist in host macrophages. However, precise roles for specific signaling components executing down-regulation of CIITA/MHC-II have not been adequately addressed. Here, we demonstrate that Mycobacterium bovis bacillus Calmette-Guerin (BCG)-mediated TLR2 signaling-induced iNOS/NO expression is obligatory for the suppression of IFN-gamma-induced CIITA/MHC-II functions. Significantly, NOTCH/PKC/MAPK-triggered signaling cross-talk was found critical for iNOS/NO production. NO responsive recruitment of a bifunctional transcription factor, KLF4, to the promoter of CIITA during M. bovis BCG infection of macrophages was essential to orchestrate the epigenetic modifications mediated by histone methyltransferase EZH2 or miR-150 and thus calibrate CIITA/MHC-II expression. NO-dependent KLF4 regulated the processing and presentation of ovalbumin by infected macrophages to reactive T cells. Altogether, our study delineates a novel role for iNOS/NO/KLF4 in dictating the mycobacterial capacity to inhibit CIITA/MHC-II-mediated antigen presentation by infected macrophages and thereby elude immune surveillance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycobacterium tuberculosis readily activates both CD4+ and Vdelta2+ gammadelta T cells. Despite similarity in function, these T-cell subsets differ in the antigens they recognize and the manners in which these antigens are presented by M. tuberculosis-infected monocytes. We investigated mechanisms of antigen processing of M. tuberculosis antigens to human CD4 and gammadelta T cells by monocytes. Initial uptake of M. tuberculosis bacilli and subsequent processing were required for efficient presentation not only to CD4 T cells but also to Vdelta2+ gammadelta T cells. For gammadelta T cells, recognition of M. tuberculosis-infected monocytes was dependent on Vdelta2+ T-cell-receptor expression. Recognition of M. tuberculosis antigens by CD4+ T cells was restricted by the class II major histocompatibility complex molecule HLA-DR. Processing of M. tuberculosis bacilli for Vdelta2+ gammadelta T cells was inhibitable by Brefeldin A, whereas processing of soluble mycobacterial antigens for gammadelta T cells was not sensitive to Brefeldin A. Processing of M. tuberculosis bacilli for CD4+ T cells was unaffected by Brefeldin A. Lysosomotropic agents such as chloroquine and ammonium chloride did not affect the processing of M. tuberculosis bacilli for CD4+ and gammadelta T cells. In contrast, both inhibitors blocked processing of soluble mycobacterial antigens for CD4+ T cells. Chloroquine and ammonium chloride insensitivity of processing of M. tuberculosis bacilli was not dependent on the viability of the bacteria, since processing of both formaldehyde-fixed dead bacteria and mycobacterial antigens covalently coupled to latex beads was chloroquine insensitive. Thus, the manner in which mycobacterial antigens were taken up by monocytes (particulate versus soluble) influenced the antigen processing pathway for CD4+ and gammadelta T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycobacterium tuberculosis is the etiologic agent of human tuberculosis and is estimated to infect one-third of the world's population. Control of M. tuberculosis requires T cells and macrophages. T-cell function is modulated by the cytokine environment, which in mycobacterial infection is a balance of proinflammatory (interleukin-1 [IL-1], IL-6, IL-8, IL-12, and tumor necrosis factor alpha) and inhibitory (IL-10 and transforming growth factor beta [TGF-beta]) cytokines. IL-10 and TGF-beta are produced by M. tuberculosis-infected macrophages. The effect of IL-10 and TGF-beta on M. tuberculosis-reactive human CD4(+) and gammadelta T cells, the two major human T-cell subsets activated by M. tuberculosis, was investigated. Both IL-10 and TGF-beta inhibited proliferation and gamma interferon production by CD4(+) and gammadelta T cells. IL-10 was a more potent inhibitor than TGF-beta for both T-cell subsets. Combinations of IL-10 and TGF-beta did not result in additive or synergistic inhibition. IL-10 inhibited gammadelta and CD4(+) T cells directly and inhibited monocyte antigen-presenting cell (APC) function for CD4(+) T cells and, to a lesser extent, for gammadelta T cells. TGF-beta inhibited both CD4(+) and gammadelta T cells directly and had little effect on APC function for gammadelta and CD4(+) T cells. IL-10 down-regulated major histocompatibility complex (MHC) class I, MHC class II, CD40, B7-1, and B7-2 expression on M. tuberculosis-infected monocytes to a greater extent than TGF-beta. Neither cytokine affected the uptake of M. tuberculosis by monocytes. Thus, IL-10 and TGF-beta both inhibited CD4(+) and gammadelta T cells but differed in the mechanism used to inhibit T-cell responses to M. tuberculosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A molecular inclusion complex has been obtained from the major acetylenic acid, santalbic acid (octadec-11-en-9-ynoic acid ortrans-11-octadecen-9-ynoic acid) of the seed oil ofSantalum album L. by a simple treatment of its sodium salt with dimethyl sulfate. Aqueous solutions (0.5–1%) of the complex produce good lather and have efficient cleansing (detergent) action on grease and dirt particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A molecular inclusion complex has been obtained from the major acetylenic acid, santalbic acid (octadec-11-en-9-ynoic acid ortrans-11-octadecen-9-ynoic acid) of the seed oil ofSantalum album L. by a simple treatment of its sodium salt with dimethyl sulfate. Aqueous solutions (0.5–1%) of the complex produce good lather and have efficient cleansing (detergent) action on grease and dirt particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Staphylococcus aureus agr quorum-sensing system plays a major role in the transition from the persistent to the virulent phenotype. S. aureus agr type I to IV strains are characterized by mutations in the sensor domain of the histidine kinase AgrC and differences in the sequences of the secreted autoinducing peptides (AIP). Here we demonstrate that interactions between the cytosolic domain of AgrC (AgrC(Cyto)) and the response regulator domain of AgrA (AgrA(RR)) dictate the spontaneity of the cellular response to AIP stimuli. The crystal structure of AgrC(Cyto) provided a basis for a mechanistic model of AgrC-AgrA interactions. This model enabled an analysis of the biochemical and biophysical parameters of AgrC-AgrA interactions in the context of the conformational features of the AgrC-AgrA complex. This analysis revealed distinct sequence and conformational features that determine the affinity, specificity, and kinetics of the phosphotransfer reaction. This step, which governs the response time for transcriptional reengineering triggered by an AIP stimulus, is independent of the agr type and similar for agonist and antagonist stimuli. These experimental data could serve as a basis on which to validate simulations of the quorum-sensing response and for strategies that employ the agr quorum-sensing system to combat biofilm formation in S. aureus infections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of models for ``metal-enzyme-substrate'' interaction has been a proactive area of research owing to its biological and pharmacological importance. In this regard the ternary copper uracil complex with 1,10-phenanthroline represents metal-enzyme-substrate system for DNA binding enzymes. The synthesis of the complex, followed by slow evaporation of the reaction mixture forms two concomitant solvatomorph crystals viz., {Cu(phen)(mu-ura)(H2O)](n)center dot H2O (1a)} and {Cu(phen)(mu-ura)(H2O)](n)center dot CH3OH (1b)}. Both complexes are structurally characterized, while elemental analysis, IR and EPR spectra were recorded for 1b (major product). In both complexes, uracil coordinates uniquely via N1 and N3 nitrogen atom acting as a bidentate bridging ligand forming a 1-D polymer. The two solvatomorphs were quantitatively analyzed for the differences with the aid of Hirshfeld surface analysis. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genome of Leishmania major encodes a type II fatty acid biosynthesis pathway for which no structural or biochemical information exists. Here, for the first time, we have characterized the central player of the pathway, the acyl carrier protein (LmACP), using nuclear magnetic resonance (NMR). Structurally, the LmACP molecule is similar to other type II ACPs, comprising a four-helix bundle, enclosing a hydrophobic core. Dissimilarities in sequence, however, exist in helix II (recognition helix) of the protein. The enzymatic conversion of apo-LmACP into the holo form using type I (Escherichia coli AcpS) and type II (Sfp type) phosphopantetheinyl transferases (PPTs) is relatively slow. Mutagenesis studies underscore the importance of the residues present at the protein protein interaction interface of LmACP in modulating the activity of PPTs. Interestingly, the cognate PPT for this ACP, the L. major 4'-phosphopantetheinyl transferase (LmPPT), does not show any enzymatic activity toward it, though it readily converts other type I and type II ACPs into their holo forms. NMR chemical shift perturbation studies suggest a moderately tight complex between LmACP and its cognate PPT, suggesting inhibition. We surmise that the unique surface of LmACP might have evolved to complement its cognate enzyme (LmPPT), possibly for the purpose of regulation.